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Disturbance attenuation–based sliding
mode control with disturbance
observer for mismatched uncertain
system
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Abstract
A disturbance attenuation–based sliding mode control approach with an extended disturbance observer is proposed for
systems with mismatched uncertainties. A novel adaptive sliding surface consisting of the disturbance estimation is pre-
sented to eliminate the effect of mismatched disturbance in the sliding mode. The proposed method exhibits the follow-
ing two attractive features. First, the asymptotical stability of adaptive sliding mode can be guaranteed even if the
disturbance estimation error of the disturbance observer exists. Second, the nominal performance of the proposed
approach is close to that of the traditional sliding mode control method in the absence of uncertainties. Finally, simula-
tion results of the numerical and application examples show that the proposed nonlinear sliding mode control approach
has the better dynamic performance as well as robustness and chattering reduction compared with other nonlinear slid-
ing mode control methods.
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Introduction

It is well known that sliding mode control (SMC) is
robust to matched uncertainties since it has the prop-
erty of invariance on the sliding mode in the presence
of matched uncertainties and disturbances. SMC
method as an effective and popular control strategy has
been widely used in diverse fields in order to obtain
satisfactory performance.1,2 However, uncertainties
existing in control systems may not necessarily satisfy
the matching criteria, examples can be seen in a lot of
practical systems such as permanent magnet synchro-
nous motors,3,4 MAGnetic LEVitation (MAGLEV)
suspension system,5 flexible joint manipulator,6 and
control system for missiles.7,8 When the system is sub-
jected to unmatched uncertainty, invariance and
robustness with traditional SMC would fail due to the
fact that SMC is not satisfied with matching condition.

In order to eliminate the effect, the mismatched
uncertainties in practical applications, many authors
are committed to researching activities to address the
problem of mismatched uncertainty in SMC. In gen-
eral, these methods can be divided into the following
two categories.

The first category mainly uses different control stra-
tegies to reduce the impact of mismatched uncertainties
on the stability of the system, such as linear matrix
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inequality (LMI)-based approach,9 the Riccati
approach,10 fuzzy and neural network based control,11–
13 adaptive approach,14–17 invariant ellipsoid method,18

and integral SMC approach.19–22 The uncertainty of
the mismatch uncertainties requires the bounds or
vanity of the H2 norm in above methods. However, it
is not a reasonable assumption of the actual system.
For example, lumped uncertainties may have nonzero
steady-state values, and there are no bounded H2
norms.23,24

The second category to address the problem of mis-
matched uncertain systems is usually use the method
composed of the backstepping and SMC method.25,26

The key idea of these approaches is based on a virtual
control method in frame of the backstepping approach
and the state to reach the surface and slide to the
desired equilibrium using the SMC method. SMC
method plays an important role in these methods. It is
an effective control method that the traditional sliding
mode with the disturbance observer (DO) for mis-
matched nonlinear systems.27,28 The approach can
reduce the effect of the mismatched uncertainties by
employing the disturbance estimation of DO. However,
the dynamic performance in the sliding mode is seri-
ously subject to the estimation error of the mismatch
uncertainties.

In this article, a new approach is proposed based on
the second category method, and the main contribu-
tions are listed as follows:

1. The adaptive sliding surface with DO is pro-
posed in order that the sliding motion of SMC
is insensitive to the mismatched disturbance.

2. The effect of estimation error associated with
mismatched uncertainties can be eliminated so
as to guarantee the asymptotical stability of
system.

3. The sliding surface can be designed when the ini-
tial states are unknown.

4. The control with adaptive term is modified to
alleviate the chattering problem further. The
proposed approach can be implemented when
the bound on the estimation of uncertainty is
not known exactly.

The remaining part of the article is organized as fol-
lows: the problem and objective are stated in section
‘‘Problem formulation.’’ The control approach consist-
ing of a novel adaptive sliding surface with DO is
described. The stability is analyzed in section
‘‘Disturbance attenuation–based SMC method.’’ The
performance is illustrated by simulation examples in
section ‘‘Numerical example.’’ Finally, conclusions are
reported in section ‘‘Conclusion.’’

Problem formulation

Consider the following system

_x1 = x2 + d(t)

_x2 = a(x)+ b(x)u

y= x1

ð1Þ

where x1 and x2 are the states, u is the control input,
d(t) is the unmeasurable disturbance, y is the output,
and b(x) 6¼ 0.

Assumption 1. The disturbance in system (1) is bounded
and defined by d�= sup

t . 0

jd(t)j.

Assumption 2. The disturbance in system (1) is continu-
ous and satisfies

djd(t)

dtj

����
�����m j= 0, 1, 2, . . . , r ð2Þ

where m is a positive number.

Remark 1. The class of disturbance in Assumption 2 is
much larger than the disturbance in Assumption 1. It
may be noted that the disturbance in Assumption 2 is
not required to know the bound m.

The objective is to design control u so that the system
output is not affected by the mismatched uncertainty
d(t).

SMC with DO

The sliding mode surface for system (1) affected by the
mismatched disturbance is designed as follows5

s= x2 + cx1 + d̂ ð3Þ

where c . 0 is a control parameter to be designed and d̂

is the disturbance estimate of d(t). Then, DO can be
written as follows5

_p=� lg2p� l g2lx+ f (x)+ g1(x)u½ �
d̂ = p+ lx

ð4Þ

where f (x)= ½x2 a(x)�T , x= ½x1 x2�T , g1(x)= ½0 b(x)�T ,
g2= ½1 0�T , and d̂, p, and l are the estimations of the
disturbance d(t), the internal state of nonlinear observer
(4), and the observer gain to be designed when lg2 .0

holds, respectively.
Accordingly, the SMC law is designed as follows5

u=� b�1(x) a(x)+ c x2 + d̂
� �

+ ksgn(s)
h i

ð5Þ
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Combining equations (1), (3), (4), and (5) leads to

_s =� ksgn(s)+ c+ lg2ð Þ d � d̂
� �

ð6Þ

According to equation (6), the states in system (1),
which stay initially outside the sliding surface, will
reach the sliding surface s = 0 in finite time when the
switch gain in the control law (equation (5)) satisfies
k . (c+ lg2)(d � d̂).

When s= 0, the sliding motion in equation (3) is
obtained as follows

_x1 =� cx1 + d � d̂ ð7Þ

Remark 2. The state in equation (7) cannot be driven to
the desired equilibrium point asymptotically based on
the sliding mode control with disturbance observer
(DO-SMC) law (equation (5)) when the derivation of
the disturbance d(t) is bounded and satisfies
lim
t!‘

_d(t) 6¼ 0. As a consequence, the DO-SMC (equa-
tion (4)) is sensitive to estimation error of the mis-
matched disturbance.

Extended DO-modified SMC

The modified sliding mode surface for system (1)
affected by the mismatched disturbance is designed as
follows6

s�=s � s(0)e�at ð8Þ

where s is given in equation (3) and a is a positive con-
stant. The extended DO can be defined as follows6

d̂ = p11 + l11x1

_p11 =� l11 x2 + d̂
� �

+ _̂d

_̂d = p12 + l12x1

_p12 =� l12 x2 + d̂
� �

ð9Þ

where d̂ and _̂d are the estimators of the disturbances
d(t) and _d(t), respectively, p11 and p12 are auxiliary vari-
ables, and l11 and l12 are positive constants. The estima-
tion error of the extended DO is bound by jjed jj � l,
where ed = ½d � d̂, _d � _̂d�T , l . 0 is relative with m.6

The extended disturbance observer–modified sliding
mode control (EDO-MSMC) law is designed as
follows6

u=� b�1(x)

a(x)+ c x2 + d̂
� �

+as(0)e�at + kls
�+ kssgn s�ð Þ

h i
ð10Þ

Similarly, combining equations (1), (8), and (10)
leads to

_s�=� kls
� � kssgn s�ð Þ+ c d � d̂

� �
+

_̂
d ð11Þ

where kl . 0 and ks . jc(d � d̂)+
_̂
dj.

When s�= 0 in equation (8), the sliding motion can
be obtained as follows

_x1 =� cx1 + d � d̂ +s(0)e�at ð12Þ

Remark 3. EDO-MSMC can be obtained when the ini-
tial state of system is known. In addition, the state x1 is
not asymptotically stable and jjx1jj � l, where l

depends on the estimation error. It is noted that the
estimation error of mismatched uncertainties will influ-
ence the stability of the state x1 and the effect of chat-
tering on the sliding mode cannot be totally eliminated
in the above approaches; thus, the novel adaptive slid-
ing surface with extended DO is proposed to improve
the dynamical performance.

Disturbance attenuation–based SMC
method

Adaptive SMC with extended DO

The novel adaptive sliding surface with extended DO
(equation (9)) for system (1) is designed as follows

�s = x2 +
cx1

x1j j+ k2e�bt
+ d̂ ð13Þ

where _k=� (cgjx1jke�bt=(jx1j+k2e�bt))�gk, k(0).0,
g.0, and b.0.

Stability of sliding mode dynamics

When the designed sliding surface �s = 0, it can be
obtained as

_x1 =�
cx1

x1j j+ k2e�bt
+ d � d̂ ð14Þ

The other candidate Lyapunov function is as follows

V x1, kð Þ= x2
1

2
+

k2

2g
ð15Þ

Accordingly, the derivative of V (x1, k) in equation
(15) is

_V x1, kð Þ=� cx2
1

jx1j+ k2e�bt
+ d � d̂
� �

x1 +
k _k

g
ð16Þ

Using adaptive parameter _k into equation (16) yields

Guo et al. 3



www.manaraa.com

_V x1, kð Þ=� c x1j j+ d � d̂
� �

x1j j � k2

�� c x1j j+ d � d̂
�� �� x1j j � k2

=� c� d � d̂
�� ��� �

x1j j � k2

�� (c� l) x1j j � k2

ð17Þ

When c . l, it can be verified that the sliding surface
(17) is exponentially stable according to Lyapunov sta-
bility theory.

Stability of SMC

Theorem 1. Suppose that Assumption 2 holds for sys-
tem (1) and the sliding mode is chosen as equation (13),
the closed-loop system is asymptotically stable when
the control law is designed as

u=� b�1(x) a(x)+
cke�bt x2k + kd̂ � 2x1

_k + x1kb
� �

x1j j+ k2e�btð Þ2

2
4

+ k1 �s+
k2

x1j j+ k2e�bt
sgn(�s)+ k3sgn(�s)

�

ð18Þ

where k1 . 0, k2 . cl, and k3 . l+m.

Proof. Taking the derivative of the sliding surface �s
defined in equation (13) yields

_�s= a(x)+ bu+
cke�bt x2k + kd � 2x1

_k
� �
x1j j+ k2e�btð Þ2

+
_̂
d ð19Þ

Using the control law (18) into (19) leads to

_�s =� k1 �s � k2sgn(�s)+
ck2e�bt d � d̂

� �
x1j j+ k2e�btð Þ2

+
_̂
d ð20Þ

The candidate Lyapunov function is as follows

V (�s)=
�s2

2
ð21Þ

Accordingly, the derivative of V (�s) in equation (21)
is

_V (�s)=� k1 �s2 � k2

x1j j+ k2e�bt
j�sj � k3j�sj

+
ck2e�bt d � d̂

� �
�s

x1j j+ k2e�btð Þ2
+

_̂
d�s

�� k1 �s2 �
k2 � c d � d̂

�� ��
x1j j+ k2e�bt

� k3 � _̂
d

��� ���� �
j�sj

ð22Þ

Considering that jjedjj �l and j _dj �m in the
extended DO, then j _̂dj= j _d � _̂

dj+ j _dj �l+m, equa-
tion (18) can be rewritten as follows

_V (�s)�� k1 �s2 � k2 � cl

x1j j+ k2e�bt
j�sj � k3 � l� mð Þj�sj

ð23Þ

Considering that k1 . 0, k2 . cl, and k3 . l+m, it
can be derived from equation (23) that the system will
reach the designed sliding surface �s = 0 in finite time
according to Lyapunov stability theory.

Remark 4. The sliding mode in the adaptive sliding
mode control with extended disturbance observer
(EDO-ASMC) method is insensitive to unmatched
uncertainties even if the disturbance estimation error of
the DO exists.

Numerical example

Example 1

Considering the following illustrative example5,6

_x1 = x2 + d(t)

_x2 =� 2x1 � x2 + ex1 + u

y= x1

ð24Þ

Constant disturbance. Here, the proposed control method
is evaluated using case 2.5 For this illustration, a con-
stant disturbance d = 0:5 is applied at t= 2 s and the
initial state value is x(0)= ½0, 0�T . For comparison stud-
ies, four methods including improved nonlinear sliding
mode control (INSMC),29 the DO-SMC,5 EDO-
MSMC6, and the EDO-ASMC are employed in the
control design for system (24). The control parameters
of all the four control methods are listed in Table 1.

It can be seen from Figure 1 that the performances
are similar for the DO-SMC, EDO-MSMC, and the
EDO-ASMC, but DO-SMC and EDO-MSMC have
the substantial chattering due to the fact that the switch
control is a discontinuous process, while the chattering
problem in the proposed EDO-ASMC can be almost
eliminated. However, the INSMC method failed to
drive the state x1 to the desired equilibrium, which the
INSMC method is sensitive to mismatched disturbance.

Complex disturbance. In this case, the proposed method
is evaluated using the complex mismatched
disturbance.6

The unmatched disturbance can be defined as
follows

4 Advances in Mechanical Engineering
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d1(t)=

t

6
+ sin2 (2t)� cos (2t) t\2

t

6
+ sin2 (2t)� cos (2t)+ 1 t � 2

8><
>: ð25Þ

and a step change appears after 2 s. The initial state
value is set as x(0)= ½1, 0�T . The control parameters of
all the three control methods are listed in Table 2.

It can be observed from Figure 2(a) that the state x1

of the proposed control method can rapidly converge
to desired equilibrium in the presence of complex mis-
matched disturbance; on the contrary, the adverse con-
trol effects, such as the undesired overshooting,
oscillation, and unsatisfactory settling time, appear in
the DO-SMC and the EDO-MSMC method. The per-
formances of the state x2 are similar for the three con-
trols after 2.5 s in Figure 1(b). It is also noticed from
Figure 2(c) that the DO-SMC and the EDO-MSMC
result in the chattering in the control input response,
while the chattering in the EDO-ASMC can be almost
eliminated. Moreover, the proposed method is adapted
best to the complex disturbance compared with the
other two methods and is insensitive to the initial of the
complex mismatched disturbance at t=2s.

Example 2: MAGLEV suspension system

MAGLEV suspension dynamic model. The dynamic model
of a MAGLEV suspension system, which is subjected
to the mismatched disturbance, is as follows5

_x=Ax+Buu+Bdd

y=Cx

�
ð26Þ

where the states are the current, vertical electromagnet
velocity, and air gap, that is, x= ½i, _z, (zt � z)�, the input
u= ucoil is the voltage, and the track input d = _zt is the
rail vertical velocity. The controlled variable is the var-
iation of air gap, that is, y= zt � z. The detailed model-
ing produce can be found in the work by Michail.30

Here, the state matrix A, the input matrix Bu, the
disturbance matrix Bd , and the output matrix C are
following

Table 1. Control parameters for the numerical example case 1.

Controllers Parameters

INSMC F = 5, P= 0:1, k= 1, b= 1, k1 = 0, k2 = 3
DO-SMC c= 5, k= 3, l= ½6, 0�
EDO-MSMC c= 5, kl = 1, ks = 1:5, l11 = 50, l12 = 10
EDO-ASMC c= 1, b= 2, k1 = 1, k2 = 0:005, k3 = 1, l11 = 50, l12 = 10

INSMC: improved nonlinear sliding mode control; DO-SMC: sliding mode control with disturbance observer; EDO-MSMC: extended disturbance

observer–modified sliding mode control; EDO-ASMC: adaptive sliding mode control with extended disturbance observer.

Figure 1. Comparison among INSMC, DO-SMC, EDO-MSMC,
and EDO-ASMC: (a) plot of x1, (b) plot of x2, and (c) plot of u.

Guo et al. 5
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A=

�Rc

Lc +KbNc
Ap

G0

�KbNcApI0

G2
0 Lc +KbNc

Ap

G0

� � 0

�2Kf

I0

MsG
2
0

0 2Kf

I2
0

MsG
3
0

0 �1 0

2
666664

3
777775

ð27Þ

Bu =
1

Lc +KbNc
Ap

G0

0 0
h iT

ð28Þ

Bd =
KbNcApI0

G2
0

Lc +KbNc
Ap

G0

� � 0 1
	 �T

ð29Þ

C = 0 0 1½ � ð30Þ

The physical meanings of the parameters in equa-
tions (27)–(30) are listed in Table 3. The major external
disturbance in the MAGLEV suspension system comes
from deterministic inputs to the suspension in the verti-
cal direction. Such deterministic inputs are the transi-
tions onto the track gradients. Deterministic input
components considered here are referred Michail30 and
shown in Figure 3. They represent a gradient of 5% at
a vehicle speed of 15m/s, while the jerk level is 1m=s3.
The control specifications of the MAGLEV system
under consideration of the deterministic track input are
given in Table 4.

Control design. In order to implement the proposed
method for the MAGLEV system, the following coor-
dinate transformation is introduced

Table 2. Control parameters for the numerical example case 2.

Controllers Parameters

DO-SMC c= 5, k= 5, l= ½10, 0�
EDO-MSMC c= 5, kl = 3, ks = 5, l11 = 50, l12 = 10
EDO-ASMC c= 5, b= 2, k1 = 1, k2 = 0:005, k3 = 1, l11 = 50, l12 = 10

DO-SMC: sliding mode control with disturbance observer; EDO-MSMC: extended disturbance observer–modified sliding mode control; EDO-

ASMC: adaptive sliding mode control with extended disturbance observer.

Figure 2. Comparison among DO-SMC, EDO-MSMC, and
EDO-ASMC in the presence of complex disturbances: (a) plot of
x1, (b) plot of x2, and (c) plot of u.

Table 3. Parameters of MAGLEV suspension system.

Parameters Meaning Value

Ms Carriage mass 1000 kg
F0 Nominal force 9810 N
G0 Nominal air gap 0.015 m
Rc Coil’s resistance 10O
B0 Nominal flux density 1 T
Lc Coil’s inductance 0.1 H
I0 Nominal current 10 A
Nc Number of turns 2000
V0 Nominal voltage 1000 V
Ap Pole face area 0:01 m2

MAGLEV: MAGnetic LEVitation.
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j =Px ð31Þ

where P= ½C CA CA2 �T .
Using this coordinate transformation, the

MAGLEV system can be rewritten as follows

_j =Aj +Buu+Bdd ð32Þ

where �A=PAP�1, �Bu =PBu, and �Bd =PBd . Using the
parameters in Table 3 into equation (32) leads to

_j1 = j2 + d
_j2 = j3
_j3 =CA3P�1j +CA2Buu+CA2Bdd

8<
: ð33Þ

The following extended DO (9) is employed to esti-
mate the disturbance in the MAGLEV system.

In order to use the proposed method for high-order
system (33), the backstepping method is also applied to
design the control law.

First, the proposed method is used for the states j1

and j2 in system (33), and the sliding mode
sj = j2 +(cj1=(jj1j+ k2e�bt))+ d̂, where c . l,
k1 . 0, k2 . cl, and k3 . l+m, can be obtained.

Second, the virtual control j3v using the proposed
method is chosen as follows

j3v =�
cke�bt kj2�kd̂�2j1

_k + j1kbð Þ
j1j j+ k2e�btð Þ2 � k1sj � k2sgn sjð Þ

ð34Þ

Let e3 = j3 � j3v, the EDO-ASMC law for the
MAGLEV suspension system is as follows

u=� CA2Bu

� ��1

CA3P�1j +CA2Bdd̂ � _j3v + k1ee3 + k2esgn e3ð Þ
h i

ð35Þ

where k1e . 0 and k2e . CA2Bdjd̂ � dj.

Simulation results. In order to evaluate the performance
of the proposed method, the proposed method is com-
pared with the DO-SMC and the EDO-MSMC. The
sliding surface of the DO-SMC method for the
MAGLEV suspension system is designed as follows

s1 = c1j1 + c2 j2 + d̂
� �

+ c3j3 ð36Þ

where the parameter ci(i= 1, 2, 3) satisfies the Hurwitz
polynomial c3s2 + c2s+ c1 = 0. Then, DO can be
obtained as follows

_p=� LBd p+ Ljð Þ � L Aj +Buu
� �

d̂ = p+ Lj

�
ð37Þ

where d̂ is the disturbance estimate, p is an auxiliary
vector, and L is the observer gain matrix to be designed.
Accordingly, the corresponding DO-SMC law is as
follows

u=� CA2Bu

� ��1

CA3P�1j+CA2Bdd̂ + c�1
3 kssgn(s1)+ c1 j2 + d̂

� �
+ c2j3

h in o

ð38Þ

The sliding surface of the EDO-MSMC method for
the MAGLEV suspension system is designed as follows

s2 =s21 +s21(0)e
�at ð39Þ

where s21 =�c1j1 +�c2(j2 + d̂)+�c3j3 + _̂d1, d1 and d̂1

are estimates of d and _d, respectively, and the para-
meter ci(i= 1, 2, 3) also satisfies the Hurwitz polyno-
mial �c3s2 +�c2s+�c1 = 0.

The EDO can be obtained as follows

d̂
j�1
1 = p1j + l1jj1

_p1j =� l1j j2 + d̂1

� �
+ d̂

j
1

_p13 =� l13 j2 + d̂1

� �

8>><
>>:

ð40Þ

where p1j is the auxiliary variable, j= 1, 2, and l1r is the
observer gain matrix to be designed, r = 1, 2, 3.

Accordingly, the corresponding EDO-MSMC law is
as follows

Figure 3. Track input to the suspension with a vehicle speed of
15 m/s and 5% gradient.

Table 4. Constraints for MAGLEV suspension system.

Constraints Value

Maximum air gap deviation ((zt � z)p) <0:0075 m
Maximum input coil voltage ((ucoil)p) <300 V(3I0Rc)
Settling time (ts) <3 s
Air gap steady-state error ((zt � z)ess) 0

MAGLEV: MAGnetic LEVitation.

Guo et al. 7
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u=� CA2Bu

� ��1
CA3P�1j +CA2Bdd̂1 +�c�1

3 as21(0)e
�at + kls2 + kssgn s2ð Þ+�c1 j2 + d̂1

� �
+�c2 j3 + d̂1

� �h i
þ

_̂_d1g ð41Þ
�

The initial state values of MAGLEV suspension sys-
tem (26) are set as ½ i(0) _z(0) (zt � z)(0) �T =
½ 0 0 0:03 �T . The external disturbance, as displayed
in Figure 3, is imposed on the system. For comparison
studies, the DO-SMC and EDO-MSMC are also
employed in the MAGLEV suspension system. The
parameters of three control methods are listed in
Table 5. Response curves of the states and inputs of the
MAGLEV system are shown in Figure 4. When the

system suffers from the mismatched disturbance, the
proposed EDO-ASMC obtains better disturbance
rejection performance than DO-SMC and EDO-
MSMC. The chattering in the sliding mode has been
almost eliminated in the EDO-ASMC, while the chat-
tering still exists in the sliding mode of the DO-SMC
and the EDO-MSMC.

The other deterministic input components, as shown
in Figure 5, are considered. They represent the jerk level

Figure 4. Comparison among DO-SMC, EDO-MSMC, and EDO-ASMC in the MAGLEV suspension system: (a) plot of the current
i, (b) plot of vertical velocity _z, (c) plot of the air gap _z� z, and (d) plot of the voltage of the coil ucoil.

Table 5. Control parameters for the MAGLEV suspension in case 1.

Controllers Parameters

DO-SMC c1 = 100, c2 = 20, c3 = 1, k= 60, l= ½100, 0, 0�
EDO-MSMC �c1 = 100, �c2 = 20, �c3 = 1, kl = 10, ks = 30, l11 = 50, l12 = 10, l13 = 10
EDO-ASMC c= 2, b= 2, k1 = 1, k2 = 0:01, k3 = 2, k1e = 1, k2e = 2, l11 = 50, l12 = 10, l13 = 10

MAGLEV: MAGnetic LEVitation; DO-SMC: sliding mode control with disturbance observer; EDO-MSMC: extended disturbance observer–modified

sliding mode control; EDO-ASMC: adaptive sliding mode control with extended disturbance observer.

8 Advances in Mechanical Engineering
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which is sine wave with magnitude of 0:4m=s3. The
control parameters of three control methods are listed
in Table 6.

The response curves of the states and inputs in this
case are shown in Figure 6. By comparing with the first
simulation scenario, it can be observed from Figure 6
that the states of the MAGLEV system for the pro-
posed EDO-ASMC have hardly affected by the mis-
matched disturbance with time variation, while the
states of the system for the DO-SMC and the EDO-
MSMC are severely affected by the mismatched distur-
bance. Moreover, with respect to the DO-SMC and the
EDO-MSMC, the chattering in the sliding mode of the
proposed EDO-ASMC is significantly eliminated.Figure 5. Track input to the suspension with a jerk level with

sine wave.

Figure 6. Comparison among DO-SMC, EDO-MSMC, and EDO-ASMC in the MAGLEV suspension system: (a) plot of the current
i, (b) plot of vertical velocity _z, (c) plot of the air gap _z� z, and (d) plot of the voltage of the coil ucoil.

Table 6. Control parameters for the MAGLEV suspension in case 2.

Controllers Parameters

DO-SMC c1 = 100, c2 = 20, c3 = 1, k= 60, l= ½100, 0, 0�
EDO-MSMC �c1 = 100, �c2 = 20, �c3 = 1, kl = 10, ks = 20, l11 = 50, l12 = 10, l13 = 10
EDO-ASMC c= 2, b= 2, k1 = 0, k2 = 0:01, k3 = 2, k1e = 1, k2e = 2, l11 = 50, l12 = 10

MAGLEV: MAGnetic LEVitation; DO-SMC: sliding mode control with disturbance observer; EDO-MSMC: extended disturbance observer–modified

sliding mode control; EDO-ASMC: adaptive sliding mode control with extended disturbance observer.
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Conclusion

In this article, a new disturbance attenuation–based
SMC approach has been proposed to reduce the effect
of mismatched uncertainties on the control system. A
new adaptive sliding mode surface, in which the distur-
bance estimation is designed according to the sliding
motion along the sliding surface, is proposed for driving
the states to the desired equilibrium point in the pres-
ence of mismatched uncertainties. Both numerical and
application examples have been simulated to demon-
strate the effectiveness as well as the superiorities of the
proposed method. The results have shown that the pro-
posed method exhibits the excellent properties of dyna-
mical performance and chattering reduction compared
with other nonlinear SMC methods. Further research
will focus on extending the proposed approach to high-
order systems.
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